NEO CHEM BICARBONATE

(PEPC method)

KIT NAME	KIT SIZE
NEO CHEM - BICARBONATE	2 X 5 ml

INTRODUCTION

The measurement of Carbon Dioxide is useful in the assessment of acid base balance disturbances. Elevated CO2 is observed in metabolic alkalosis and compensated respiratory acidosis. Low CO2 is observed in compensated respiratory alkalosis and metabolic acidosis. Differentiation between the metabolic and respiratory conditions is only possible through additional laboratory determinations.

METHOD PRINCIPLE

Early methods for the determination of carbon dioxide were based on either volumetric or manometric determination of the CO_2 released from a sample by acid treatment. These methods used the instruments of Van Slyke until they were replaced by the Natelson microgasometer, which still uses manometric determination of total Co_2 . Methods have been developed for Auto Analyzers but these suffer from baseline drift and require equipment which many laboratories do not have. Enzymatic methods for CO_2 have been introduced by Wilson, Mayson and Norris using phosphoenolpyruvate carboxylase. The present procedure is a enzymatic assay utilizing Phosphoenolpyruvate Carboxylase(PEPC) and a NADH analog.

Carbon Dioxide (in the form of bicarbonate ions) reacts with phosphoenolpyruvate (PEP), in the presence of phosphoenolpyruvate carboxylase (PEPC), to form oxaloacetate. The cofactor then in the presence of malate dehydrogenase (MDH) is oxidized by the oxaloacetate.

KIT CONTENTS

Reagent Name	Pack Size	Pack Size
R1-Bicarbonate Reagent	2 x 5 ml	5 0 x 1 ml
R2-Bicarbonate Calibrator	0.5ml	2 ml

Please refer the calibrator value mentioned on the via label.

WORKING REAGENT PREPARATION AND STABILITY

The reagents are stable at 2-8°C till expiry date printed on the package when stored at 2-8°C.

CONCENTRATIONS IN THE TEST

PEP 7.0 mmol/L Mg ++ 8.0 mmol/L PEPC \geq 500 U/ml MDH \geq 600 U/ml NADH 0.45 mmol/L

WARNINGS AND NOTES

Product for in vitro diagnostic use only.

- 1. A sample with concentration over 50mmol/L should be diluted by 0.9% NaCl and re-assayed.
- 2. Do not pipette by mouth to avoid CO2 exhalation.
- 3. Venous blood is recommended, and collect it air-tightly.

- 4. Sample should be stored at 2~8°C and analyze within 1 hour.
- 5. Sodium azide is included, avoid ingestion or contact with skin or mucous membranes. In case of skin contact, flush affected area with water. In case of contact with eyes or if ingested, seek immediate medical attention.
- 6. Discard the kit when it is muddy or the absorbency of reagent blank < 1.6.

ADDITIONAL EQUIPMENT

- Automatic analyzer or photometer able to read at 405 nm
- Thermostat at 37°C
- General laboratory equipment

SPECIMEN

Fresh Serum, heparinized plasma.

EDTA, citrate and oxalate should not be used as anticoagulants, as they will affect results. Samples should be kept tightly closed, as CO_2 will diffuse from the sample causing erroneous values.

PROCEDURE

These reagents may be used both for manual assay and in several automatic analyzers. Programme Sheets are available on request.

MANUAL PROCEDURE

Wavelength 405 nm
Temperature 37°C
Cuvette 1cm

Pipette into the cuvette:

Reagent	Blank (B)	Calibrator (C)	Test (T)
R1 Bicarbonate Reagent	1000 μ1	1000 μ1	1000 μ1
Bring up the temperature of o			
Distilled Water	10 μ1		
R2 - Bicarbonate calibrator		10 μ1	
Sample			10 μl

Mix well, incubate for 8 minutes at 37°C and read the absorbance of calibrator, sample against reagent blank.

CALCULATION

Bicarbonate concentration = Abs.(T) / Abs(S) x calibrator concentration

REFERENCE VALUES

22.0 to 29.0 mmol/l

It is recommended for each laboratory to establish its own reference ranges for local population.

QUALITY CONTROL

To ensure adequate quality control, each run should include assayed normal and abnormal controls. If commercial controls are not available it is recommended that known value samples be aliquoted, frozen and used as controls.

PERFORMANCE CHARACTERISTICS

Linearity: 50mmol/L

WASTE MANAGEMENT

Please refer to local legal requirements.

LITERATURE

- 1. Roger L.Forrester,et al. Clin Chem , 1976, 22: 243~245
- 2.Methods of Enzymatic Analysis(Bergmeyer,ed.) 1985, VII:572~577
- 3.National Clinical Laboratory Operator Program, Ye Ying-wu, etal,1997,186 \sim 187

SYSTEM PARAMETERS

Method	End Point	
Wavelength	405 nm	
Zero Setting Temperature	Distilled Water	
Setting Incubation	37° C	
Temperature Incubation	37° C	
Time	8 mins	
Delay Time		
Read Time		
No. of Reading		
Interval Time		
Sample Volume	0.01 ml (10 ul)	
Reagent Volume	1.0 ml (1000 ul)	
Calibrator Concentration	Refer Calibrator vial	
Units	mmol/l	
Factor		
Reaction Slope	Decreasing	
Linearity	50 mmol/l	